Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery

نویسندگان

  • Tumpa Sarkar
  • Christine C. Conwell
  • Lilia C. Harvey
  • Catherine T. Santai
  • Nicholas V. Hud
چکیده

The condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel condensing agents. However, short oligonucleotides are not as easy to condense into well-defined particles as gene-length DNA polymers and present particular challenges for discrete particle formation. We describe a novel strategy for improving the condensation and packaging of oligonucleotides that is based on the self-organization of half-sliding complementary oligonucleotides into long duplexes (ca. 2 kb). These non-covalent assemblies possess single-stranded nicks or single-stranded gaps at regular intervals along the duplex backbones. The condensation behavior of nicked- and gapped-DNA duplexes was investigated using several cationic condensing agents. Transmission electron microscopy and light-scattering studies reveal that these DNA duplexes condense much more readily than short duplex oligonucleotides (i.e. 21 bp), and more easily than a 3 kb plasmid DNA. The polymeric condensing agents, poly-l-lysine and polyethylenimine, form condensates with nicked- and gapped-DNA that are significantly smaller than condensates formed by the 3 kb plasmid DNA. These results demonstrate the ability for DNA structure and topology to alter nucleic acid condensation and suggest the potential for the use of this form of DNA in the design of vectors for oligonucleotide and gene delivery. The results presented here also provide new insights into the role of DNA flexibility in condensate formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The thermodynamic advantage of DNA oligonucleotide 'stacking hybridization' reactions: energetics of a DNA nick.

'Stacking hybridization reactions' wherein two or more short DNA oligomers hybridize in a contiguous tandem orientation onto a longer complementary DNA single strand have been employed to enhance a variety of analytical oligonucleotide hybridization schemes. If the short oligomers anneal in perfect head-to-tail register the resulting duplex contains a nick at every boundary between hybridized o...

متن کامل

Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and ...

متن کامل

Orientation-dependent FRET system reveals differences in structures and flexibilities of nicked and gapped DNA duplexes

Differences in structures and flexibilities of DNA duplexes play important roles on recognition by DNA-binding proteins. We herein describe a novel method for structural analyses of DNA duplexes by using orientation dependence of Förster resonance energy transfer (FRET). We first analyzed canonical B-form duplex and correct structural parameters were obtained. The experimental FRET efficiencies...

متن کامل

Thermodynamic criteria for high hit rate antisense oligonucleotide design.

Antisense oligonucleotides are used for therapeutic applications and in functional genomic studies. In practice, however, many of the oligonucleotides complementary to an mRNA have little or no antisense activity. Theoretical strategies to improve the 'hit rate' in antisense screens will reduce the cost of discovery and may lead to identification of antisense oligonucleotides with increased pot...

متن کامل

Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH.

Transcript elongation by bacterial RNA polymerase (RNAP) is thought to be regulated at pause sites by open versus closed positions of the RNAP clamp domain, pause-suppressing regulators like NusG and RfaH that stabilize the closed-clampRNAP conformation, and pause-enhancing regulators like NusA and exit channel nascent RNA structures that stabilize the open clamp RNAP conformation. However, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005